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constant quantity. We denote this ratio by c. 

In the final stage we should consider the boundary value problem for the function UP (P) : 
u2 (P) = u (P) - cu, (P). The process of successive approximations for this function will lead to a 
convergent algorithm. The solution will be completed by transfer to the function U(P). 

In solving the problem of the theory of elasticity, we must begin with the six partial 
solutions of the boundary value problems and expand the eigenfunction obtained from the 
initial boundary condition in terms of the functions obtained from the partial solutions. 

We note that the method described here was used in solving the second outer problem for 
an incompressible medium in /LO/. 
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SOLUTION OF THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY USING 
THE MONTE CARLO METHOD* 

B.E. POBEDRYA and P.V. CHISTYAKOV 

TWO versions of the Monte Carlo (MC) method for solving problems of the theory of 
elasticity are discussed. One uses the process of random walk over spheres to solve the 
Lam& equations, and the other represents the quantity sought in the form of multiple integrals 
(e.g. when solving the Cauchy problem fox the wave equation of the theory of elasticity in an 
unbounded space). 

The process of random walk over spheres was proposed in /l/ for solving the Laplace 
equation, and was later used in more complicated problems (an analysis of the work done on 
this subject can be found in /2, 3,'). A solution of the boundary value problem for the Lam; 
equation was studied for the plane case in 141, and the possibility of using the MC method 
for the problems of flexure of plates was discussed in /3, 5/**.(**A further development of 
methods of solving the problems of plate flexure can be found in the paper by V.M. Ivanov 
and O.Yu. Kulchitskii. Development and study of effective methods of random walk over circles 
for solving problems of plate flexure and the plane problem of the theory of elasticity. 
Deposited at VINITI, ~0.3270-83, Leningrad, 1983.) Theorems were given in /6/, enabling the 
initial system of elliptic equations to be replaced by a system of integral equations which 

*Prikl.Matem.Mekhan.,52,2,341-345,1988 



can be solved conveniently using the MC method. An integral representation applicable to the 
Lam& equations is already known /?/. 

Other papers which deal with the solution of partial differential equations, onlymention 
the possibility of solving the Lam6 equations. However, even in the plane case, only separate 
examples were given and the problem of substantiating the method (the empirical nature of the 
estimate of the solution used, the accuracy of the estimate, etc.), was given little thought. 
The authors are unaware of any cases where specific three-dimensional problems of the theory 
of elasticity have been solved using a digital computer. 

1. Empirical assessment of the solution of boundar_y valtie problems for the 
Lam& equations. Let us consider the solution of the first boundary value problem for the 
LamtS equations in the region GfR*(r is the boundary of the region) 

(i - 2%~) V% (P)i_ grad div II (P) = 0, a jr = cp. .(i.l) 

The mean value theory /7/ holds for the vector function u satisfying the Lamk equation. 
The following relation holds for any sphere S (P,R)cG of radius R with the centre at 

the point F: 

u(P)=& 
s 

A(P,Q)u(QfdS ('2) 0.2) 

B(P,R) 

where A (P, Q) is a matrix whose elements are 

Aij=Aii(% 3) =&(5z~~,-!- (1 - 4v)$$ (1.3) 

zI = sin q sin e, X* = cos ‘p sin 0, x8 = ~09 e 

while 'p and 8 are spherical coordinates of the point Q on the sphere S(P, R). 
We will solve problem (1.1) by the MC method, using the integral relation (1.2) and 

random walk over spheres. 

Theorem. Let P be any point belonqinq to the reoion G. and let the random quantity u,(P) 
be defined on the trajectory P,Q,,...,$s -of the random walk over 
the e-neighbourhood of the boundary I, by the formula 

spheres up to emergence in 

“@ (4 = 
-i 

A (P* 91). . .A CC’,,-,, QJ u (Q,J, P E G \ re 
u v% p E rs 

where -4 fQk-1, Qk) is a matrix with elements AU&%, 3,) of the form 
spherical coordinates of the point Qr uniformly distributed over _ 

(1.4) 

(l-3), vk and ek are 

the sphere with centre 
h-1; qkv ok (k = 1, . . ., p) are independent random quantities, % = rs and QkeSr, for any 
k < P. 

Then, in the case when the expectation value has a finite value, 

M (sp(p)) = u(P). (1.5) 
Proof. Let us write f(P)= M(u,(P)). 
When pear,, we obviously have f(P) = u(P). 
Let now PEG\I'~ According to the formula for the total expectation value, we have 

f(P)= ~[~t~,~l)~[u~(~~) IQd = M[~(p,Ql)f(Q~)l 

from which, using the relation 

M[A(P, 43fWl =& 5 AP,Qd f (91) dS K’d 
S(P.Rl 

we find that the function f(P) satisfies, for any PEG\r, the integral relation (1.2). 
The solution (1.5) can be written in the more convenient form 

u(P)= 2 P{~=k}M(~~(~)l~=k) 
h=l 

(W 

where P(p= k) is the probability of the appearance of the trajectory of length k, and 

y (u,(P) la= k) is the conditional expectation value under the condition that the length of 
the trajectory is equal to k. 

Let us assume that the law of distribution of the random quantity E depends on the 
parameter a. We shall call the estimate of a, any function of sampled values 'p (En * * .,.EN) 
used as an approximation to a. If Mcp=o, then the estimate cp will be called empirical. 
Usually, an arithmetic mean is used as the estimate of n=ME. The validity follows from the 
law of large numbers In/. 
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If "(1) 
P(l), . .* $2y are independent samples of the random quantity u,(P), then, under the 

conditions of the theorem, the estimate 

(1.5) 

will be an empirical and valid estimate of u(P) However, when the estimate (1.7) is used, 
the convergence of ii(P) to the solution u(P) as N -_; ca is poor, since the growth in 

dispersion of the elements of the product of random matrices occurring in (1.4) exerts a 

substantial influence /9, lo/. The dispersion increase exponentially as t increases for the 
elements of the product of t independent random matrices A (Cpi, 0,) (i = I, . .y t) of the form (1.3 

with a base substantially greater than unity. 

We have found that the dispersion of the elements of the product of dependent matrices A 

appearing in (1.4) differs little, when IL=tr from (1.7) when t>4. The probabilities 

P{p = k), appearing in (1.6) decrease rapidly as k increases. 

/3. Two empirical assessments of the solution of the Lamb equations. Below 

we give two estimates for the solution of problem (1.1). One involves rejecting "long" 

trajectories (LT), and the other involves replacing the matrix A in the LT by a unit matrix. 

The first estimate is given by the formula /9/ 

(2.1) 

where Nt is the number of samples of length k, ct (i) is the length of the trajectory in the 

i-th sample. The estimate enables us to calculate the first R terms in (1.6). The terms 

with number k>n are assumed to be equal to zero. This introduces a systematic error equal 

to the residue of the series (1.6) decreasing in magnitude as n increases, whilethe statistical 

error increases due to the appearance of terms corresponding to LT. 

Using the solutions of a number of problems, we obtained two additional rules for choosing 
n in formula (2.1), complementing each other: 1) the number of terms in the series (1.6) 
included in the sum (2.1) increases as long as the RMS error is comparable in magnitude with 

the term; 2) n is chosen from the similar problems whose solution is known. 

Use of the estimate (2.1) gives an appreciable increase in the accuracy of the solution 

obtained, as compared with the usual estimate (1.7) in which the LT are not rejected. 

The second estimate of the solution u(P) is given by the formula 

(2.2) 

All samples of the random quantity u,(P) corresponding to the trajectories of length 

k<t are found from formula (1.4), while when k>t, the product of the matrices A is 

replaced by a unit matrix. Using the numerical results for different regions, initial points, 

e and Y, we found that already when p=5 I the product of the matrices A in (1.4) is fairly 

close to the unit matrix. 

We shall consider, as an example, the solution of the boundary value problem (1.1) for a 
number of regions G. The value of the vector u(P) was found at an arbitrary point PEG\ 
r e- The function q(P) ensuring the displacement field 

u (P) = (UX. uy, uz) 42.3) 

(I =z-(I-22v)I__ (1=.z,y Q r3 r(r+r) 

lkz=; + (l- v)3; ,l=,@+p+rP 

z=z--a, g=&/--, E=zfc 

in G was used as the boundary conditions. 
Thedisplacementvector (2.3) represents the solution of the Boussinesq problem of an 

elastic 'half-space r>--c acted upon by a concentrated force at the point (a,b,-c) in the 
direction of the OX axis. 

We have used, as the region G1, a sphere of radius R=i with centre at the origin of 
coordinates, with an excised two-sided angle perpendicular to the section XGY (Fig.1). AOE 
is the intersection of the two-sided angle with the plane XOY, tg b = 0,1. We use, as the 
region G,, the region consisting of a parallelepiped and a unit cube (Fig.2) IABI=IADI= 
IDEI=l;JAGI=IOC(=2. 

The table gives the estimates B ,, and Vt of the known solutions (2.3) atthepoints P, (-0.4; 
0; 0) E G, and P, (0.8; 0.5; 0.8) E 4, calculated from formulas (2.1) and (2.2), respectively. In 
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(2.3) a = b = 0, c = 1.5 was chosen for P, and (I= b= C= 0.5 for P,. The number of samples 
N = 20 000, n v= 9, t = 5, v = 0.2. The estimates for the dispersions D (k)i, D (ct)i (i = 1, 2, 3), the values 
of e, and the exact value of uie were also given. 

Pi I P, I P. 

1 I 1 2 3 1 2 3 

e=O,l 

fa..l;~103 I -39 33 1391 I 132 32 1512 
n/kZi. 105 

-:z 
110 120 105 123 132 

J"(V& (gl)i.lOS ,103 
-15 1563 217 2 1795 

31 32 36 38 35 42 

EZO,Ol 

~lJ(vl)i.los (B,)i103 1 
-107 1 1606 110 14 1831 

uie.103 -1:: 

21 13 

0 ,611 

/ 

I:: 0 19:: 

Fig.1 Fig.2 

Using these results we can conclude that the estimate (2.2), compared with the estimate 
(2.1), yields a substantial improvement in convergence. 

The algorithm given above was used to find the vector u(P) in problem (1.1). Let us 
construct an algorithm for determining the derivatives ui,, E aui/aq in the problem (1.1). We 

can obtain, for the vector 

0(P) = ( Ul,l, IL,,*, “‘,9 u2,1, %2,¶, qst *3,1* %,l. %,I) 
the following integral relation: 

B (P, Q) u (Q) dS (Q) 
, R) 

(2.4) 

where B (P. 0) is a 9 X3-matrix whose elements are found from the solution of the first 
boundary value problem of the theory of elasticity for a sphere /ll/. 

Let P denote any point of the region G\T,. The value of 0(P) is found from the 
realizations of the random quantity 

0',(P) = B (P, Q1)A (QI, Qn). ..A (Q,+ 0,) "(Q,,) 
where B (P, Q1) is the matrix appearing in the integral relation (2.4) and A (0i-1. 0,) is a 
matrix of the form (1.3). 

3. Use of the integral representations of the solution of the wave equations. 
In the theory of elasticity'the solution of the wave equation in R” can be represented, under 
thegiveninitial conditions 

a*diW - bv% - (a* - b*) grad div ii = K (3.1) 
u b y, I, 0) = f k, y, a), au/at llSO = cp (2, Y, S) 

in the form of a sum of integrals up to the quintuple inclusive /12/, and the integrals can 
be found using the MC method /13/. 

We will use the proposed method to solve the test problem (3.1) with the following initial 
data: 

K = A (aa - 1, ba - 1) cos t, f = A (1, I), cp = 0 
A (a, b) = (a sinz + b cos y, CC sin y + t3 cc19 z, a sin I + b cost) 
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In this case u(r, y,z, t) = A (1,1) cos t is the solution of the problem. The following estimate 
is obtained for the solution at the point I = d&y = 7~14,~ = n/8 for A = 50 OOO,a = 2, b = 1, t = 1 : 
B = (0.93; 0.91; a.za) (the exact solution is ~1 = (0.92; 0.88; 0.21)). 
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ON AN ERROR IN THE THEORY OF THE CONFORMAL MAPPING OF SIMILAR REGIONS AND 
ITS APPLICATION TO THE FLOW PAST A PROFILE* 

A.L. GONOR 

The correct value of the peripheral derivative in the conformal mapping of the outsides 
of similar regions is determined and used in the formula for the velocity distribution over 
a contour similar to the given profile. The formula'contains a correction and examples are 
given of determining the velocity distribution on an elliptic profile. 

When plane fluid flows are investigated, formulas for recomputing the velocity distri- 
bution during the passage from the given profile C to a similar profile 6, (Fig.1) are fre- 
quently encountered. The formulas make it possible to alter the hydrodynamic characteristics 
of a wing. The basic results of this problem are given in /l/, and in all editions of the 
book /2/. 

Let us carry out a critical analysis of the formulas derived, following the accountgiven 
in /2/. Let the flow pattern past the profile C be known, and the conformal mapping 

t = F(%, C). F(.w, C) = co fi) 
be given of the outside of C onto the outside of the unit circle II;l>i* for which, in 
particular, the correspondence between the points of C and the points of the circumference 
c = c*a (8 - 8 (W, g is the arc length along the contour C) is determined. 
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